Integrating Expert Knowledge With Domain Adaptation for Unsupervised Fault Diagnosis

نویسندگان

چکیده

Data-driven fault diagnosis methods often require abundant labeled examples for each type. On the contrary, real-world data is unlabeled and consists of mostly healthy observations only few samples faulty conditions. The lack labels imposes a significant challenge existing data-driven methods. In this paper, we aim to overcome limitation by integrating expert knowledge with domain adaptation in synthetic-to-real framework unsupervised diagnosis. Motivated fact that experts have relatively good understanding on how different types affect signals, first step proposed framework, synthetic dataset generated augmenting real vibration bearings. This integrates encodes class information about types. However, models trained solely based do not perform well because distinct distribution difference between synthetically faults. To gap data, second an imbalance-robust adaptation~(DA) approach adapt model from faults~(source) faults~(target) which suffer severe imbalance. evaluated two cases bearings, CWRU laboratory wind-turbine dataset. Experimental results demonstrate faults are effective encoding type robust against levels imbalance

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Boosting for Unsupervised Domain Adaptation

To cope with machine learning problems where the learner receives data from different source and target distributions, a new learning framework named domain adaptation (DA) has emerged, opening the door for designing theoretically well-founded algorithms. In this paper, we present SLDAB, a self-labeling DA algorithm, which takes its origin from both the theory of boosting and the theory of DA. ...

متن کامل

Unsupervised Transductive Domain Adaptation

Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address t...

متن کامل

Real-time fault diagnosis using knowledge-based expert system

Abnormal operating conditions (faults) cost process industry billons of dollars per year and can be prevented if they are predicted and controlled in advance. Advanced software applications, based on the expert system, has the potential to assist engineers in monitoring, detecting, and diagnosing abnormal conditions and thus providing safe guards against these unexpected process conditions. Abn...

متن کامل

Unsupervised Domain Adaptation with Feature Embeddings

Representation learning is the dominant technique for unsupervised domain adaptation, but existing approaches often require the specification of “pivot features” that generalize across domains, which are selected by task-specific heuristics. We show that a novel but simple feature embedding approach provides better performance, by exploiting the feature template structure common in NLP problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Instrumentation and Measurement

سال: 2022

ISSN: ['1557-9662', '0018-9456']

DOI: https://doi.org/10.1109/tim.2021.3127654